Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Indian J Med Microbiol ; 49: 100571, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38554777

RESUMEN

PURPOSE: Toxoplasma gondii is an obligate intracellular zoonotic parasite that can infect all warm-blooded animals, including humans. Currently, clinical findings of toxoplasmosis are being related to T. gondii strains such as Type I genotype may cause high pathogenicity and Type II genotype causes a milder clinical presentation. We have showed in our previous that Type II genotype is the most frequent strain detected in stray cats and wild birds living in natural life of Izmir. The aim of this study was to assess toxoplasmosis seroprevalence in immunocompromised patients, investigate the presence of T. gondii DNA in their blood samples, and genotype the PCR positive ones. METHODS: The 42 buffy-coat and serum samples were collected from immunocompromised patients who were from various clinics. Thereafter, Real-Time PCR targeting RE gene of T. gondii was performed with DNA samples obtained from buffy-coat samples. Genotyping was performed by sequencing of GRA6 and GRA7 gene regions of positive DNA samples obtained from tissues of bioassay and PCR positive samples. RESULTS: According to Real-Time PCR results, T. gondii DNA was detected in 23.8% (10/42) samples. Among these 10 samples, two samples were determined as T. gondii Type II genotype. Anti-Toxoplasma IgG antibodies were detected in 28.57% (12/42) samples. CONCLUSIONS: Overall, the detection of Type II genotype in humans in Izmir province suggested that T. gondii infection in humans, stray cats, and wild animals may be associated to each other in terms of transmission.

2.
Acta Parasitol ; 69(1): 691-699, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358452

RESUMEN

BACKGROUND: Cryptosporidiosis is a disease that causes major intestinal damage in humans and animals. The causative agents of the disease are Cryptosporidium species. In newborn calves, diarrhea can lead to death, resulting in significant economic losses for the farms. Therefore, accurate, rapid, and cost-effective diagnosis of the disease is very important. MATERIAL AND METHODS: In this study, a novel colorimetric loop-mediated isothermal amplification (LAMP) test named "Rapid-Crypto Colorimetric LAMP test" targeting Cryptosporidium spp. 18S rRNA gene was developed to detect cryptosporidiosis in the feces of newborn calves. The analytical sensitivity of the test was determined by plasmid controls. Clinical sensitivity was determined using the feces of 127 calves collected from farms in Izmir and Manisa provinces. All of the samples were also investigated with Real-Time PCR targeting the Cryptosporidium spp. COWP gene. Cross-reactivity was tested using the DNA of other parasites and bacteria. RESULTS: According to the results, the analytical sensitivity of the "Rapid-Crypto Colorimetric LAMP test" was found as 1 copy plasmid/reaction. When the results were compared with the Real-Time PCR test, the sensitivity of the "Rapid-Crypto Colorimetric LAMP test" was 100% and the specificity was 97.4%. The test did not cross-react with other parasites and bacteria.   CONCLUSION: The "Rapid-Crypto Colorimetric LAMP test" developed in this study provides an advantage in the diagnosis of Cryptosporidium spp. in calf stool samples since it can be applied in basic laboratories or in the field, does not require experienced personnel, and has high sensitivity. Moreover, diagnosis can be made with the naked eye without using any device.


Asunto(s)
Animales Recién Nacidos , Enfermedades de los Bovinos , Colorimetría , Criptosporidiosis , Cryptosporidium , Heces , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Animales , Criptosporidiosis/diagnóstico , Criptosporidiosis/parasitología , Bovinos , Heces/parasitología , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/parasitología , Técnicas de Amplificación de Ácido Nucleico/métodos , Colorimetría/métodos , Cryptosporidium/aislamiento & purificación , Cryptosporidium/genética , Técnicas de Diagnóstico Molecular/métodos , ARN Ribosómico 18S/genética , ADN Protozoario/genética
3.
Cytokine ; 171: 156357, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690425

RESUMEN

Cytokine storm is an important cause of death in COVID-19 patients. A recent clinical study showed that administration of recombinant interferon lambda 1 (IFN-λ1 or IL-29) may prevent severe COVID-19. On the other hand, IL-6 has been associated as a prognostic marker of worsening for COVID-19 patients. The objective of this study is to screen IFN-λ1, IL-6 and antibody levels in consecutive serum sample sets of COVID-19 patients. A total of 365 serum samples collected from 208 hospitalized COVID-19 patients were analyzed for IFN-λ1 and IL-6 levels as well as SARS-CoV-2 neutralizing antibodies and anti-S1 IgG antibodies. Analyses of serum samples for cytokine levels showed that IFN-λ1 (>8 pg/mL) and IL-6 (>2 pg/mL) were detected in approximately 64% and 21% patients, respectively. A decrement in IFN-λ1 levels and IL-6 levels above 35 pg/mL can be sign of clinical severity and upcoming dead. An increment in IL-6 levels wasn't detected in every COVID-19 patient but a decrement in IL-6 levels was related to clinical improvement. Importantly, the detection of IFN-λ1 level together with an increase in anti-S1 IgG antibody response were observed in clinically improved patients. Screening severe COVID-19 patients for IFN-λ1, IL-6, and anti-S1 IgG antibody levels during their hospital stay especially in intensive care units may be beneficial to monitor the clinical status and management of treatment strategies. Importantly, detection of IFN-λ1 together with protective IgG antibody response can be an indication of clinical improvement in severe COVID-19 patients and these patients may be discharged from the hospital soon.

4.
Comp Immunol Microbiol Infect Dis ; 101: 102057, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37647822

RESUMEN

Toxoplasma gondii is a protozoan parasite that may infect many mammals including humans. Cats are one of the main sources of infection for humans. Therefore, routine screening of cats with tests that are inexpensive, rapid, and do not require sophisticated laboratory equipment is important. In this study, a lateral flow assay (LFA) was designed to rapidly diagnose toxoplasmosis in cats. For this purpose, we selected GRA1 protein of T. gondii due to its high antigenicity in diagnostic and vaccine studies. We further analyzed the immunological properties of GRA1 protein using in silico tools. Then, we expressed and purified recombinant GRA1 (rGRA1) protein and used it during the development of LFA to detect toxoplasmosis in serum samples (n = 40) of cats. According to the results, rGRA1 protein has negative GRAVY value, high aliphatic index, alpha helix, random coil and 12 B cell epitopes. The in silico data supported the high antigenic properties of rGRA1 protein and showed that it can be a good antigen candidate for LFA. Among 30 cat positive serum samples, 27 were found positive by the LFA while seronegative sera (n = 10) were negative by the LFA. The preliminary data showed that the LFA has high sensitivity (90 %) and specificity (100 %). When we used high responsive cat sera (i.e. sera that have optical density > 0.5 with ELISA) the sensitivity value reached 100 %. These results showed that rGRA1 protein is a good candidate to develop a LFA for rapid diagnosis of toxoplasmosis in cats.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Toxoplasmosis , Humanos , Animales , Gatos , Proteínas Protozoarias/genética , Antígenos de Protozoos/genética , Anticuerpos Antiprotozoarios , Inmunoglobulina G , Proteínas Recombinantes/genética , Toxoplasma/genética , Ensayo de Inmunoadsorción Enzimática/veterinaria , Mamíferos/metabolismo
5.
Turkiye Parazitol Derg ; 46(4): 342-357, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36444412

RESUMEN

Toxoplasma gondii (T. gondii) that can infect most warm-blooded animals and humans, is an obligate intracellular apicomplexan parasite with a wide host range. About one-third of the world's population is infected with this parasite. While toxoplasmosis progresses asymptomatically in individuals with a strong immune system, it can cause serious clinical manifestations and death in immunocompromised individuals. The parasite is transmitted to humans through the consumption of water and food contaminated with cat feces, as well as raw or undercooked animal products, congenital infection and blood/organ transplantation. Additionally, T. gondii is often observed in farm animals such as sheep and goats. Clinical manifestations and abortions caused by T. gondii in sheep and goats lead to enormous economic loss worldwide. There is a commercial vaccine against T. gondii, called Toxovax (MSD, New Zealand) that can only be used in sheep. For these reasons, there is a need for innovative T. gondii vaccine that is harmless, easily produced, which can prevent losses and be used in all living things. Advances in immunology, molecular biology, genetic, biotechnology and proteomics bring new perspectives to vaccine studies. Studies in innovative vaccine studies against T. gondii have accelerated with the discovery of new antigens by in vitro screenings, and bioinformatic analyzes, the use of various expression systems and new adjuvant types. Recombinant protein vaccines are biotechnological vaccines that are frequently preferred due to their rapid and easy production in various expression systems, availability of very and high purity products, ease of manipulation and stimulation of both cellular and humoral immune responses. Recombinant protein vaccines, developed by biotechnological methods, are promising tools for providing a protective immune response against toxoplasmosis. In this review, an overview of the parasite complex life cycle, its pathogenesis, humoral and cellular immune responses in the host, and recombinant protein vaccine studies developed against the parasite are presented.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Femenino , Embarazo , Ovinos , Animales , Biotecnología , Toxoplasma/genética , Cabras , Animales Domésticos , Proteínas Recombinantes
6.
Turkiye Parazitol Derg ; 46(3): 253-270, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094131

RESUMEN

Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that can infect almost all warm-blooded animals, including humans, and one-third of the global population is thought to be infected with this parasite. Infection can occur through consumption of contaminated food, contact with an infected host, or congenital transmission. While toxoplasmosis is asemptomatic in people with a healthy immune system, it can cause severe infections in people with a suppressed immune system or with immunodeficiency. In addition to causing diseases in humans, it also causes infections in livestock and may result in stillbirth and abortion in sheep and goats. There is no 100% effective medicine or vaccination against the parasite that causes major clinical symptoms and financial losses. There is a need for an effective, safe, and durable vaccine that can provide protective immunity for use in humans and animals. Vaccination studies against toxoplasmosis have gathered speed since the 1990s. Today, studies can be carried out to develop effective and safe vaccines depending on the developments in molecular biology, biotechnology, and immunology. DNA vaccines are a promising vaccine platform against toxoplasmosis because they are easy to produce, they are safe, they do not need a cold chain, and they can stimulate both humoral and cellular immune responses. This review provides an overview of the complex life cycle, pathogenesis, and epidemiology of the parasite; the immune response that develops in the host against the infection it causes; and the DNA vaccines developed against toxoplasmosis and these vaccines.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Vacunas de ADN , Animales , Humanos , Estadios del Ciclo de Vida , Ovinos
7.
Int J Pharm ; 626: 122199, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36115468

RESUMEN

Toxoplasmosis is a global health problem affecting both human and animal populations. The lack of effective treatment makes the development of a vaccine against toxoplasmosis one of the main goals in the management of this disease. In our study, vaccine formulations containing the multistage recombinant antigens, rBAG1 + rGRA1 were developed with a combined adjuvant system consisting of chitosan and Salmonella Typhi porins in micro (MicroAS) and nanoparticulate (NanoAS) forms. BALB/c mice were immunized intraperitoneally with vaccine formulations two times at three-week intervals. Three weeks after the second vaccination, mice were challenged with 7-8 live tissue cysts of the virulent T. gondii PRU strain by oral gavage. Higher cellular uptake by macrophages and enhanced cellular (IFN-γ and I-4 in stimulated spleen cells) and humoral (IgG, IgG1, IgG2a) responses were obtained with the adjuvanted formulation, higher with microsystem when compared to that of nanosystem. Microsystem was found to stimulate Th1-polarized immune responses, whereasnon-adjuvanted antigens stimulated Th2-polarized immune response. The highest survival rate and reduction in cysts numbers and T. gondii DNA were obtained with the adjuvanted antigens.Our study showed that adjuvanted multistage recombinant vaccine systems increase theimmune response with strong protection againstT. gondii, more profoundly in microparticulate form.


Asunto(s)
Quitosano , Vacunas Antiprotozoos , Toxoplasmosis , Vacunas de ADN , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Animales , Antígenos de Protozoos , Citocinas , ADN , Humanos , Inmunoglobulina G , Ratones , Ratones Endogámicos BALB C , Porinas , Proteínas Protozoarias/genética , Vacunas Antiprotozoos/genética , Toxoplasma , Toxoplasmosis/prevención & control , Vacunas Sintéticas
8.
BMC Infect Dis ; 22(1): 110, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35100997

RESUMEN

BACKGROUND: Discovery of new Toxoplasma gondii serotyping epitopes is important due to reports showing the influence of genotype on the severity of toxoplasmosis. In Turkey, genotypes belonging to type II, type III and Africa 1 lineages were mainly detected. The present study focused on to find out epitopes with high discriminative capacity to serotype these genotypes using well characterized strains isolated from Turkey. METHODS: To meet this objective, GRA6 and GRA7 genes were sequenced from strains belonging to the type II, III and Africa 1 lineages, and B cell epitopes inside these sequences were predicted by Bcepred and additional docking analysis was performed with B cell receptor. Based on these analyses, 22 peptides harboring lineage specific epitopes were synthesized. Then, the serotyping potency of these peptides was tested using peptide ELISA and well categorized serum samples collected from stray cats infected with genotypes of the different lineages type II (n:9), III (n:1) and Africa 1 (n:1). As a result of peptide-ELISA, a serotyping schema was constructed with peptides that show high discriminative capacity and this assay was validated by sera collected from humans after an outbreak (n:30) and mother/newborn pair sera (n:3). Later, the validated serotyping schema was used to serotype a larger group of human (n:38) and cat (n:24) sera. RESULTS: Among 22 peptides, GRA6II/c, GRA7III/d, and GRA6 Africa 1/b epitopes have shown discriminative capacity. During the validation of peptide-ELISA, the serotype of toxoplasmosis outbreak and mother/newborn cases were detected to be serotype II. Moreover, the analyses in a larger group showed that serotype II was prevalent in humans and stray cats. CONCLUSIONS: Overall, the results showed that the serotyping schema could be successfully used to serotype T. gondii infections caused by type II, III and Africa 1 genotype.


Asunto(s)
Toxoplasma , Animales , Antígenos de Protozoos/genética , Gatos , Brotes de Enfermedades , Ensayo de Inmunoadsorción Enzimática , Humanos , Péptidos , Serotipificación , Toxoplasma/genética
9.
Comp Immunol Microbiol Infect Dis ; 81: 101745, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35030533

RESUMEN

Toxoplasma gondii is an obligate protozoan parasite that can infect mammals and birds. Cats are the definitive host of T. gondii and have a very important role in transmission of toxoplasmosis due to the shedding of millions of unsporulated oocysts, that become infective in the environment. Since cats play a major key role in the epidemiology of toxoplasmosis, rapid and accurate diagnosis of infected cats has utmost importance. In this study, we developed a novel colorimetric loop mediated isothermal amplification (LAMP) assay detecting T. gondii RE gene and modified a previously developed colorimetric LAMP assay targeting B1 gene to detect T. gondii DNA in cat feces for the first time. The analytical sensitivity of colorimetric LAMP assays was determined using plasmid controls. The clinical sensitivities of both colorimetric LAMPs were determined using cat fecal DNA samples that were confirmed to be positive by two different real-time PCRs in our previous study. According to the results, analytical sensitivities of both assays were 1 copy plasmid/reaction. Using real-time PCR as a reference method, sensitivities of colorimetric LAMP assays targeting RE and B1 genes were 100% and 97.56% whereas specificities of both assays were 100%. Overall, the colorimetric LAMP RE assay developed in this study brings an advantage in the diagnosis of T. gondii in cat fecal samples since it has higher sensitivity, does not need for experienced personnel, and can be applied in basic laboratories or in the field.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Animales , Colorimetría/veterinaria , ADN Protozoario/genética , Heces , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Sensibilidad y Especificidad , Toxoplasma/genética , Toxoplasmosis Animal/diagnóstico
10.
Turkiye Parazitol Derg ; 45(4): 231-236, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34889187

RESUMEN

Objective: Neospora caninum is a protozoon parasite that has a worldwide distribution and mainly causes abortion in cattle and current serological evidence shows that the disease may be also zoonotic. Wild birds play a role as a reservoir of the disease in nature. The study aimed to determine the prensence of N. caninum in wild birds. Methods: In this study, the presence of neosporosis in wild birds (n=55) including 22 different species found in the western side of Turkey, was investigated by polymerase chain reaction (PCR). In addition, PCR positive samples were confirmed by sequencing, BLAST, and phylogenetic analysis using MEGA7. Results: Obtained results showed that the presence of N. caninum DNA was 5.45% (3/55) in brain-heart homogenates wild birds. The bird species which were found positive for N. caninum were little owl (Athene noctua), common buzzard (Buteo buteo), and little tern (Sternula albifrons). According to phylogenetic analysis and BLAST, all samples were compatible with reference N. caninum isolates. Conclusion: To the best of authors' knowledge, this is the first study detecting N. caninum in little tern. In future studies, it may be interesting to investigate the prevalence of N. caninum in other wild animals to elucidate the transmission properties.


Asunto(s)
Enfermedades de los Bovinos , Coccidiosis , Neospora , Animales , Animales Salvajes , Anticuerpos Antiprotozoarios , Aves , Bovinos , Coccidiosis/epidemiología , Coccidiosis/veterinaria , ADN Protozoario , Femenino , Neospora/genética , Filogenia , Embarazo , Turquía/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA